Question 30:

0.5 g mixture of K2Cr2O7 and KMnO4 was treated with excess of KI in acidic medium. Iodine liberated required 100 cm3 of 0.15 M sodium thiosulphate solution for titration. The percent amount of KMnO4 in the mixture is

Atomic weight-K=39, Cr=52, Mn=55, Na=23, S=32

Let 'a' g of $K_2Cr_2O_7$ be present in the mixture. Mass of $KMnO_4 = (0.5-a)$ g Eq. mass of $K_2Cr_2O_7 = Molecular mass /6$

$$= 294/6 = 49.0$$

Eq. mass of KMnO4 = Molecular mass / 5

$$= 158/5 = 31.6$$

No. of equivalents of $K_2Cr_2O_7 = a/49.0$

No. of equivalents of $KMnO_4 = (0.5-a)/31.6$

No. of equivalents of $Na_2S_2O_3$ in 100 cm³ of 0.15 M solution

 $=(100\times0.15)/100$

=0.015

Equivalents of K₂Cr₂O₇ + Equivalents of KMnO₄ = Equivalents of iodine = Equivalents of Na₂S₂O₃

49.0a+31.6(0.5-a)=0.015 17.4a=1.274 a=0.0732

% of KMnO4=85.36